Algebra 2

5-Review

 $Take\ this\ test\ as\ you\ would\ take\ a\ test\ in\ class.\ When\ you\ are\ finished,\ check\ your\ work\ against\ the\ answers.$

<u>5-01</u>

- 1. Evaluate $\sqrt[4]{150}$ using a calculator. Round the result to two decimal places if appropriate.
- 2. Evaluate $25^{\frac{3}{2}}$ using a calculator. Round the result to two decimal places if appropriate.
- 3. Solve $128 = 2(x-1)^6$

5-02

Simplify the expression. Assume all variables are positive.

- 4. $q^{\frac{7}{3}} \cdot q^{\frac{2}{3}}$
- 5. $\frac{x^{10}}{3x^6}$
- 6. $\sqrt[3]{81} + \sqrt[3]{24}$
- 7. $\sqrt[5]{64x^8y^{10}}$

<u>5-03</u>

Graph the function. Then state the domain and range.

- 8. $y = -2\sqrt[3]{x} + 1$
- 9. $y = \sqrt{x-2} 3$
- 10. Describe the transformations to get $g(x) = 2\sqrt[3]{x+3}$ from $f(x) = \sqrt[3]{x}$.

5-04

Solve the equation.

- 11. $\sqrt{x+2} = 10$
- 12. $2\sqrt[3]{3x-4}=6$
- 13. $(x+3)^{\frac{2}{3}} 3 = 1$
- 14. $\sqrt{x+10} = x+1$
- 15. The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$, where V is the volume and r is the radius of the sphere. Find the radius of a sphere with a volume 4 ft³.

5-05

Let f(x) = x + 2, and $g(x) = x^2$. Perform the indicated operation.

- 16. f(x) g(x)
- 17. $f(x) \cdot g(x)$

<u>5-06</u>

- 18. f(g(x))
- 19. g(f(x))

5-07

Find the inverse of the function.

20. $f(x) = 64x^3$

22. $h(x) = 2(x)^4, x \ge 0$

21. $g(x) = x^{10} - 2, x \le 0$

Answers

- 1. 3.50
- 2. 125
- 3. -1, 3
- 4. q^3
- 5. $\frac{x^4}{3}$
- 6. $5\sqrt[3]{3}$
- 7. $2xy^2\sqrt[5]{2x^3}$
- 8. D: All real; R: All real

9. D: $x \ge 2$; R: $y \ge -3$

- 10. Vertical stretch by factor of 2 and translate 3 left
- 11. 98
- 12. $\frac{31}{3}$
- 13. 5
- 14. $\frac{-1+\sqrt{37}}{2} \left(\frac{-1-\sqrt{37}}{2} \text{ is extraneous}\right)$
- 15. 0.98 ft
- 16. $-x^2 + x + 2$
- 17. $x^3 + 2x^2$
- 18. $x^2 + 2$
- 19. $x^2 + 4x + 4$
- $20. \quad y = \frac{\sqrt[3]{x}}{4}$
- 21. $y = -\sqrt[10]{x+2}$
- 22. $y = \sqrt[4]{\frac{x}{2}}$